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ABSTRACT

For a long time, research into students’ geometry performance has been regarded as an essential research 
topic in mathematics. By outlining an innovative mathematics teaching model and offering sample les-
son practices from geometry on how to implement the model in the Turkish setting, the purpose of this 
chapter is to give an international perspective on reform-based practice in mathematics teaching and 
learning. The chapter focuses on a model for teaching geometry classes that incorporates realistic, ex-
ploratory, technology-enhanced, and active (RETA) principles, as well as its implementations in Turkish 
middle schools. It presents the different approaches of teaching geometry, common geometry classroom 
practices in Turkey, the previous models leading to the RETA model, and finally, a review of the RETA 
model’s principles together with their benefits and drawbacks followed by a discussion.

INTRODUCTION

This chapter provides an international perspective on a reform-based practice in mathematics teaching 
and learning by describing a novel mathematics teaching model, and presenting sample lesson practices 
on how to use the model in the Turkish context. Specifically, this chapter introduces a model to teach 
geometry lessons with realistic, exploratory, technology-enhanced and active (RETA) principles, and its 
practical applications in middle schools in Turkey. First, both the alternative models of teaching geometry 
and the typical geometry teaching approach in Turkey are discussed. Then, how these existing models 
led to the RETA model is described, followed by a discussion of the principles of the RETA model along 
with pros and cons. For the pros and cons of each principle of the model, practical applications of the 
principles are presented through sample lesson plans. These sample RETA-based lesson plans are on 
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orthogonal and isometric drawings of polycubes which were developed, implemented, and evaluated 
as a part of a design-based research project with four cycles. The lessons were intended to help middle 
school students learn about three-dimensional (3D) shapes and in particular orthogonal and isometric 
drawings of polycubes. Last, the chapter ends with a discussion of the solutions, recommendations, and 
future research directions.

The 3D geometry thinking is “the conception of thoughts and ideas about 3D geometry concepts by 
amalgamating various types of reasoning;” and reasoning in this concept refers to “a set of processes 
and abilities that act as a feasible tool in problem-solving and enable us to go beyond the information 
given” (Pittalis & Christou, 2010, p.192). Orthogonal and isometric drawings have a variety of names 
in the literature; for example, orthogonal drawings can be referred to as orthogonal projections (Jones et 
al., 2012), orthographic projections/drawings (Moyer-Packenham & Bolyard, 2002), plan/top view, and 
elevations/side views (Yeo et al., 2005), and isometric drawings are also known as isometric projections 
(Gambari et al., 2015) and perspective drawings (Oldknow & Tetlow, 2008), as well as sometimes very 
vaguely as a building or a representation/picture of a building (Ben-Haim et al., 1985). The differing titles 
for these 2D representations were deemed synonyms in this chapter, and it is opted to use orthogonal 
and isometric drawings, which are both among the earliest names for these sorts of representations in 
the literature (Cooper & Sweller, 1989). In a similar vein, polycubes are three-dimensional shapes that 
are constructed from unit cubes. Polycubes are also referred to as polycubical shapes/objects (Cooper & 
Sweller, 1989), (solid) cube constructions (Ben-Haim et al., 1985) and a solid or an object constructed 
from unit-sized cubes (Pittalis & Christou, 2010).

BACKGROUND

Models to Teach Geometry

Recently, there have been various attempts to develop frameworks to teach mathematics at the middle 
school level, as Usiskin (1987) did in the 1980s. Particularly, the focus of research on 2D representations 
of 3D shapes has been on developing frameworks that characterize and analyze 3D geometry thinking. 
Of this research, some helped to improve the RETA model which is introduced in this chapter.

For example, Yeh and Nason (2004) suggested and tested a framework for using technology to teach 
3D geometry. They claimed that three separate components make up 3D geometry: communication, 
objects, and spatial thinking. In a technological context, communication refers to (a) spoken and writ-
ten language to describe 3D geometric entities and (b) non-verbal 2D representation of objects. Taking 
these three components into account, they designed VRMath, a software program that displayed realistic 
representations of 3D geometry problems in a range of colours, along with a link to a discussion forum. 
The authors state that two primary school students in grades 6 and 7 found the tool effective in promot-
ing the construction of knowledge about 3D geometry ideas and procedures.

Recently, Goodall and colleagues (2017) proposed a framework for teaching mathematics that many 
students in the United Kingdom can use at home or school (not specified in but including 3D geometry). 
In contrast to the tedious, isolated, rote, elitist, and depersonalized (TIRED) mathematics discovered by 
Nardi and Steward (2013), they believe mathematics teaching should be accessible, linked, inclusive, 
valued, and empowering (ALIVE). To comprehend ALIVE, we must first comprehend the TIRED 
framework. In a research study conducted by Nardi and Steward (2013) with 70 13- and 14-year-old 
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pupils in the United Kingdom, they discovered that mathematics instruction can be experienced by 
students as TIRED:

•	 Tedious: Math was tedious for the majority of the pupils, who saw it as a dull and unimportant 
subject with no real-world applications. Furthermore, interviewed pupils stated that mastering 
mathematics provides little opportunities for practical life.

•	 Isolated: Students thought of mathematics as a solitary topic in which students had to work alone 
to solve a mathematics problem.

•	 Rote: Many children saw mathematics as a series of rules to follow, therefore there were indisput-
able and distinct answers to math problems for them.

•	 Elitist: Pupils saw mathematics as a difficult subject and came to believe that only very bright or 
gifted students could achieve in it.

•	 Depersonalized: The majority of the pupils in the research stated that their mathematics learning 
was not personalized, but that it could be.

Goodall and colleagues (2017) suggested ALIVE concepts to increase mathematics performance in 
opposition to this TIRED mathematics:

•	 Accessibility principle refers to the use of appropriate enactive tasks that allow pupils to develop 
their own knowledge. The concept is proposed in the premise that these activities provide pupils 
with practically no justification to be excluded from developing mathematical thinking.

•	 Linked principle entails referring to prior knowledge in order for pupils to connect new material 
to what they already know and understand.

•	 Inclusive principle implies that all students participate in the process of learning mathematics 
through numerous activities, rather than believing that only extraordinarily bright children can 
learn mathematics.

•	 Valued principle stresses the use of real-life examples in the classroom in order to comprehend 
the worth of mathematics. The researchers went on to say that the examples should be drawn from 
those that individuals see as valuable both individually and culturally.

•	 Empowering principle relates to the students’ agency, which allows them to take charge of their 
own learning. The goal is to assist students to have a better grasp of lifelong learning while mak-
ing as much progress as possible in school mathematics. This principle also provides ways for 
students to be more empowered in their learning through carefully planned mathematics exercises, 
while also acquiring 21st-century abilities like creativity and technological literacy.

When establishing the RETA principles for geometry education, this design-based research was 
inspired by these frameworks in order to meet the needs in the common mathematics teaching approach 
of geometry in Turkey.
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Common Mathematics Teaching Approach of Geometry in Turkey

Exam-Focused Pedagogy

Many studies including Bayart et al. (2000), Duval (1998), and Fujita et al. (2017) discovered and 
documented difficulties in 2D representations of various 3D shapes. These studies revealed that students 
performed poorly on these representations, particularly when constructing orthogonal and isometric 
drawings. When the reasons for poor performance on such drawings were investigated, the reviewed 
literature showed teachers as one of the most influential factors. That is to say, the literature indicated 
that teachers’ beliefs influence their actions in teaching. Particularly mathematics teachers in Turkey 
believed that students’ high national exam scores indicate teacher quality; and hence, teachers “teach 
to the test,” and avoid student-centred activities (Doruk, 2014; Saralar-Aras, 2022). There was a lack 
of teacher incentive to teach 3D shapes without exam-focused teaching. This exam-focused pedagogy 
might be a result of continuing teacher performance evaluations in Turkey, where teachers’ performance 
was primarily assessed based on student achievement on national tests since 2016 (Konan & Yilmaz, 
2017, 2018).

Limited Use of Technology

Furthermore, in various studies (e.g., Bayrakdar-Çiftçi et al., 2013; Ciftci & Tatar, 2015; Tekalmaz, 2019), 
Turkish mathematics teachers were observed using the available technology in restricted ways, mostly 
to present recorded educational videos and quizzes from the ministry’s Moodle page while wrapping 
up their sessions. Despite the emphasis on integrating technology into the new mathematics curriculum 
(Ministry of National Education [MoNE], 2018), particularly the use of dynamic geometry software 
packages in mathematics lessons, none of the observed Turkish teachers in Saralar’s (2020) study encour-
aged students to use such software to visualize 2D representations of polycubes in any of their lessons 
on 3D shapes. In this study, the observed teachers stated that they believed in the present mathematics 
program’s efficacy, and support its reliance on technology. When it came to teaching, however, most 
teachers believed that memorizing their techniques was the only way to master 2D representations of 
3D shapes, and they recommended practising and drilling with a larger number of questions for better 
and faster results, rather than learning with and through technology.

Teacher-Centered Lessons

Last but not least, lessons on teaching polycubes were found to be teacher-centred in many studies despite 
the emphasis on student-centred activities in primary and secondary education programmes in the Turkish 
education system (Birgin & Acar, 2020; MoNE, 2018). Studies on this issue discovered that mathematics 
teachers dominated the use of tools and manipulatives (Saralar, 2020). In these courses, children were 
given very limited chances to utilize manipulatives and express themselves. Earlier research (Christou 
et al., 2006; Widder & Gorsky, 2013) suggests that this pedagogy is connected to the requirement to 
perceive 3D shapes from their 2D representations since it creates hurdles for not only students’ learning 
but also teachers’ teaching. According to numerous researchers, teaching 3D shapes in middle schools is 
regarded to be difficult among instructors, and as a result, teachers either do not teach it or utilize direct 
instruction rather than student-centred activities (e.g., Bakó, 2003).
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Based on these findings and wider research, a model was created that proposes mathematics educa-
tion, particularly teaching of geometry, may be realistic, exploratory, technology-enhanced, and active, 
hence the RETA principles. These principles led to the development of four lessons on orthogonal and 
isometric polycube drawings, one of which is available in Appendix 1.

METHODS

How the Work on this Approach Led to the RETA Model

The initial goal in developing the RETA model was to examine how national exam performance may 
be enhanced without relying on direct instruction or the repetition of national exam questions. Based 
on the wider literature and the findings of Saralar’s (2020) study the RETA model was developed as 
an alternative to exam-focused pedagogy, limited use of technology and teacher-centred lessons. The 
following section briefly summarizes the RETA model, whilst explaining how the RETA model differs 
from more common approaches to teaching in Turkey.

First of all, rather than emphasizing the importance of the topic with the national exam questions, 
the RETA-based lessons were designed using real-life examples (R) and contexts. Secondly, the courses 
were supplemented with worked examples that were quite similar to national exam questions, but instead 
of drill and practice, they were meant to include mistakes for students to detect and remediate, which 
highlights the exploratory (E) principle. Thirdly, given that the Turkish government provided tablets to 
all students in the sample and interactive whiteboards to all classrooms, it was decided to strategically 
integrate dynamic mathematics tools such as GeoGebra and Cabri in the study of polycubes to provide 
multiple visual and dynamic representations using the technology-enhanced (T) principle. Finally, in 
response to teacher-centred teaching and teachers’ dominance in manipulative use, the RETA’s active 
(A) principle emphasized learning environments in which students have autonomy over manipulative 
use rather than passively following teacher constructions and replicating drawings on the board; hence, 
active refers to students’ involvement as active participants.

RETA MODEL

Realistic (R), exploratory (E), technology-enhanced (T), and active (A) are the four principles of the 
RETA model. Even though these terms are polysemic, each principle is described in the context of the 
model, and the meanings connected with these principles are explained in the following sections. This 
section describes these principles more explicitly for their use in the context of the RETA model. For 
each principle, positive and negative aspects, as well as sample lesson applications, are discussed.

Realistic

Being the first principle of the RETA model, realistic lessons refer to the inclusion of real-life examples 
and situations in the teaching. Real-life examples demonstrate how the knowledge and skills gained in the 
mathematics course may be used in the real world (Gravemeijer, 1994; Van den Heuvel-Panhuizen, 2003). 
This is meant to raise students’ awareness of the topic’s relevance in their everyday lives, allow them 
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to draw inferences about mathematical ideas’ real-world connections, increase motivation for studying 
mathematics (three-dimensional shapes in this specific case), and assist students in solving real-world 
issues in the future. The immediate goal of this research was to improve on the Turkish government’s 
national geometry exam, however, it is hoped that there is more to it than just passing the Turkish national 
exam. The following examines the spatial and mathematical aspects (importance) of realistic lessons 
before explaining how they are applied in the sample lessons prepared.

When we think of how three-dimensional shapes are related to real life, spatial thinking comes into 
conversation as the first aspect. Spatial thinking is employed in a variety of ways in everyday life. To il-
lustrate, we utilize spatial thinking automatically while preparing luggage and packing it into a car trunk 
(Liben, 2007). It is also required for education programs, ranging from the use of molecular models in 
chemistry (Barke & Engida, 2001; Pribyl & Bodner, 2006) to the comprehension of mountain strata in 
geography (Lee & Bednarz, 2009; Robertson et al., 2009). Spatial thinking is also seen as a vital skill in 
many disciplines including science, engineering, and mathematics, particularly in geometry.

Many occupations, from radiologists to product designers, require the ability to think in two and three 
dimensions. Doctors, for example, study two-dimensional scans of the body generated by radiologists to 
identify the patient’s problems. Architects who sketch their construction designs on paper or on a computer 
screen to depict them in two dimensions are another and a closer approximation to geometrical draw-
ings. They create architectural plans and elevations to reduce three-dimensional forms into a sequence of 
two-dimensional components for a variety of purposes, including solar energy conservation, and heating 
and electrical structures (Matusiak, 2017). Elevations are crucial to understand key dimensions such as 
wall lengths and heights, as well as to show openings such as doors and windows; and, plans are handy 
depictions to understand proximity and spatial relations between the rooms of a building, thus, they are 
both useful in real-life contexts. In middle school geometry curricula, plans are mostly called top views, 
while elevations are termed views from the front, rear/back, left, and right. The author designed lessons 
on teaching elevations. Incorporating such real-life examples into lesson plans might pique students’ 
attention and motivate them to study more about the subject (Fredricks et al., 2017).

The second (mathematical) aspect of realistic education of the RETA model considers English real-
istic mathematics education as an example. That is to say, the author took the studies that are conducted 
in the United Kingdom into consideration with the knowledge that it is one of the first countries to 
embrace and implement realistic mathematics education (De Lange, 1996) – which started early in the 
1970s to enhance the quality of mathematics instruction in Dutch schools (Freudenthal, 1971, 1973). 
According to Freudenthal (1987), there is a global need to apply mathematics, and realistic mathematics 
education is one approach to do so. According to him, by starting and staying in reality while teaching 
mathematics, realistic mathematics education creates mathematics of human worth. It relates mathemat-
ics to reality in order to keep the children’s attention and encourage them to study mathematics (van den 
Heuvel-Panhuizen, 2003).

It is much easier for children to make this connection (subject and its real-life relation) when it is 
more noticeable as in the study of population in geography or the study of motion of objects in physics. 
However, many children and even adults struggle to make this connection when it comes to mathematical 
topics (Cornell, 1999; Larkin & Jorgensen, 2016). They either see mathematics as an abstract discipline 
or only link specific aspects of mathematics to real life, but they fail to explain the broader application 
of these elements in actual life (e.g., Mulero et al., 2013; Reid et al., 2003). For instance, Mulero and 
friends (2013) showed that more than half of 94 university students did not associate architecture with 
mathematics and did not even know any architect who is pioneering a mathematical contribution to ar-
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chitecture. While this is the situation, it is critical to give a realistic mathematics education that allows 
children to recognize the connection between mathematics and real life as early as elementary school.

Children learn mathematics based on tasks they may face in their daily lives in realistic mathematics 
education, and they have the chance to create their own knowledge via group work, debate, and reflection 
(van den Heuvel-Panhuizen & Drijvers, 2014). These criteria are consistent with constructivist theories 
(Cobb, 1994; Cobb & Yackel, 1995; Gravemeijer, 1994; Simon, 1995) and correspond to the RETA 
model’s other principles, such as exploratory and active, as detailed in the following sections.

An excellent example of an effective intervention that complements the author’s approach to teaching 
mathematics is English realistic mathematics education, especially geometry (Cooper & Harries, 2009; 
Dickinson & Eade, 2005; Dickinson & Hough, 2012). For example, in 2003, a local Manchester school 
trialled realistic mathematics education in English classes with Year 7 children, and the response to the 
created realistic education materials was extremely favourable (Dickinson & Eade, 2005; Eade & Dick-
inson, 2006). This study took place in over 20 schools, and data revealed that children’s comprehension 
of mathematics and approach to problem-solving improved. Furthermore, not only did students who 
actively engaged with the material improve but so did lower attaining ones. Over the course of three 
years, there have been consistent findings concerning increases in mathematics proficiency in different 
areas, including geometry in mathematics (Blum et al., 2019; Dickinson et al., 2010; Hough et al., 2017; 
van den Heuvel-Panhuizen, 2019). Since then, this realistic approach to mathematics instruction has 
been implemented into middle school mathematics classes in the United Kingdom (Dickinson & Hough, 
2012), and it has served as the foundation for the realistic principle of the RETA Model.

Together with all the positive responses, there are also several criticisms of realistic mathematics 
education. To begin with, there is a criticism that it has been exaggerated, and that abstract mathematical 
concepts are far superior to realism (Keune, 1998, 1999). Regarding this, in realistic mathematics educa-
tion, “there is a need for giving more attention to abstraction and logical reasoning to better make use of 
the Dutch mathematical talent that would be lost because of the realistic approach,” said Keune (1999, 
p. 365). However, it is essential to highlight that Keune’s (1999) speech, which outlines his perspective 
on realistic mathematics education, focused on what realistic mathematics education has become in the 
Netherlands rather than what it is meant to be. As a response to this criticism, the author agrees with 
Gemert (2015) that just because something is practical does not mean it cannot be abstracted or taught 
through examples. Considering this, in addition to including realistic mathematics, the RETA model 
included worked examples for practice, explained in the Exploratory principle.

Secondly, realistic mathematics education has been criticized as being reductionist since it gives 
realistic but not actual settings (Verstappen, 1994). According to Verstappen (1994), issues in realistic 
mathematics education give simplified actual situations that may subsequently pose difficulty in man-
aging real problems formally in mathematics and later in life. Gravemeijer (2001) reacted to this by 
highlighting that the issues in realistic mathematics education can, but do not have to, deal with actual 
everyday life situations that are more difficult for children and involve many variables than what realistic 
mathematics education recommends. According to him, providing a familiar setting in which students 
can act intelligently in order to fully understand the mathematics in it is critical in realistic mathematics.

Finally, some studies demonstrate that just presenting things in a realistic setting does not always 
make things simpler to understand for children. For instance, Chandler and Kamii’s (2009) experiment 
with 98 children revealed that using coins as a real-life example to teach place value makes it more dif-
ficult for children to grasp the topic. They discovered that while it is easy for teachers to conceive of one 
dime as ten pennies as adults, it is difficult for children to do so, and it is considerably more difficult 
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when teachers incorporate monetary examples in the teaching of ones and tens. This is just one example 
showing that real world applications may make teaching certain concepts more difficult, thus real-life 
examples should be carefully chosen to meet the needs of the children. Considering both advantages and 
disadvantages, the next paragraph discusses how to include realistic mathematics into the sample lessons.

In the designed lessons, videos and photos are utilized to bring the concepts of orthogonal and isometric 
drawing of polycubes to life (see Appendix 1 for a sample lesson). Many studies recommend real-life 
videos and explanations showing mathematical material in action. However, some critics have claimed 
that videos are perceived by children as entertainment rather than information, resulting in children not 
benefitting from the videos as much as they could (Salomon & Perkins, 2005). As a result, in the sample 
RETA-based lessons, the design decision was made to not only present important material in the videos 
but also to create a student-centred atmosphere for discussion. Peer discussions, as well as a subsequent 
whole-class discussion, were meant to assist students to establish links between classroom knowledge 
and skills and their real-life applications. Furthermore, nearly every unit cube construction made by 
children is a depiction of a realistic image of a building (e.g., a castle and a school).

Exploratory

The term exploratory describes the second principle, which relates to the use of worked examples in 
classes to assist students in investigating the topic. Worked examples are pedagogical devices that give 
students someone else’s answer to study (Evans & Swan, 2014). The exploratory principle is aimed at 
providing students with worked examples of the topic with some of these examples designed to include 
mistakes to explore and remediate. These mistakes could be chosen from the most common mistakes 
of the students, reported by available research. The aim for including these worked examples is, in a 
way, taking advantage of problem-solving opportunities, as many argue that problem-solving affords 
exploration (e.g., Carreira & Jacinto, 2019; Schoenfeld, 1985, 2013), and students who study geometry 
through exploration with problem-solving achieve higher scores than those who study with traditional 
methods in middle school geometry (see Klančar et al., 2021).

Geometry is mostly taught via examples, which have a place in many teaching and learning theories 
(Bruner, 2017; Marton et al., 2013; Marton et al., 2004; Skemp, 2012; Watson et al., 2006; Wilson, 
1986). Students are frequently asked to work on examples and solve problems in geometry classes. Solv-
ing problems, nonetheless, may not be particularly useful when children are just beginning to study and 
have just basic knowledge of the subject (Renkl, 2011; Salden et al., 2009). When compared to solving 
problems at the beginning of the lessons, worked examples were shown to be more successful for initial 
skill acquisition (Kalyuga et al., 2001; Renkl, 2014, 2017). Hence, in the design of lessons with the 
exploratory principle of the RETA, it may be suggested to include worked examples when introducing 
the topic.

Moreover, learning geometry through criticising, comparing, and debating various solutions has 
several advantages, ranging from increasing student engagement with examples to supporting students 
in successfully integrating previous knowledge into present learning processes (Pierce et al.,, 2011; 
Silver et al., 2014). “Mathematical discourse has long been shown influential in supporting students’ 
learning of mathematics” (Bennett, 2010, p.79). Many mathematics education researchers support the 
idea that dialogic teaching is beneficial (Bakker et al., 2015; Hofmann & Mercer, 2016; Kazak et al., 
2015; Mercer & Sams, 2006; Ruthven et al., 2017; Warwick et al., 2016). Some also argue that dialogic 
processes aid conceptual development in mathematics (e.g., Kazak et al., 2015). Yet, dialogue during 
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work with examples is not without its criticisms. Some researchers have argued that implementing dia-
logic mathematics teaching might be difficult, not just for newly qualified teachers (Bennett, 2010) but 
also for more experienced ones (Wegerif & Scrimshaw, 1997). More recent research also found evidence 
indicating that not only teachers but also students, frequently oppose discourse in a mathematics lesson. 
Regarding this, Bennett (2010) asserted that “it’s hard getting kids to talk about math” (p.79). Particularly, 
in the country of Turkey, except for occasional experiments for research purposes (e.g., Gürbüz & Agsu, 
2017), dialogic mathematics education is not a prevalent teaching approach. Teachers of mathematics 
are still lecturing in front of the class, and there is little room for student discussion and interaction in 
mathematics classes in Turkey; therefore, there may be resistance to dialogic teaching.

In RETA-based lesson plans, similar to Durkin and Rittle-Johnson (2012) and Evans and Swan 
(2014), some of the planned worked examples have intentionally designed mistakes for students to diag-
nose, remediate, and debate probable causes for them. This is trialled previously and found to enhance 
students’ understanding of geometry topics. For example, Evans and Swan (2014) worked with eight 
secondary school mathematics teachers in the United Kingdom and over twenty in the United States to 
integrate worked examples with intentional errors into their lessons. The teachers prepared lessons using 
the worked examples provided by the researchers. These examples are available at http://map.mathshell.
org/ on the Mathematics Assessment Project’s official website. When the children failed to solve a ge-
ometry problem, these teachers offered them to work with worked examples. The teachers highlighted 
as a constraint that some children were more concerned with correcting mistakes than making holistic 
comparisons. Nonetheless, all students managed to improve their performance on the mathematics test. 
This could be related to the productive failure of Kapur (2014) and Sinha and Kapur (2021) who argue 
that failure in problem-solving, particularly when followed by discussion, is productive and results in 
learning (Hedge’s g = 0.87).

To help students develop their conceptual understanding of holistic concerns related to the topic 
(2D representations of polycubes), the designed lessons featured peer discussions followed by a whole-
class discussion. The author was aware that conversations were a) more demanding for both teachers 
and students due to the abilities required to evaluate and analyse the thinking behind solutions, and b) 
significantly different from how teaching takes place in the Turkish setting. To conclude, the model’s 
second principle attempts to provide an exploratory mathematical education in which students engage 
with worked examples, questions, and mathematics dialogue.

Technology-Enhanced

The third principle advocates for technology-enhanced learning, which refers to the strategic use of 
dynamic tools in teaching mathematics. There may be various dynamic geometry tools to integrate into 
mathematics lessons including Cabri, GeoGebra and SketchPad. The aim of integrating these tools into 
the mathematics lessons through the technology-enhanced principle is to present various visual and 
dynamic representations of mathematics topics. The following examines two elements of technology-
enhanced education: spatial and mathematical aspects, as well as their implementations in the designed 
sample lessons.

People many find it challenging to reason about three-dimensional shapes when working with two-
dimensional representations, thus making this a more complex task (Reisberg & Heuer, 2005). In order to 
impart meaning to three-dimensional shapes, people frequently create two-dimensional representations. 
Two-dimensional representations can be incorporated into the human mind in a variety of ways, such 



51

RETA Model for Teaching Mathematics
﻿

as using landmarks based on the properties of a shape or by reference to other shapes (Tversky, 2005). 
Reisberg and Heuer (2005) point out that “mental images seem to be represented from a determinate 
viewing angle and distance … since visibility from a perspective and occlusion seem to play a role in 
those data” (p.39). This statement is supported by their depiction study, which shows that when people 
are asked to describe a cat in a picture, their responses are faster than when they are asked to describe 
specific parts of a cat, and that they are even faster to describe large and visible parts like the cat’s head 
in the picture than small and hidden parts like whiskers and claws. Cubes that lie behind other cubes 
in geometry courses on polycubical shapes may be partially visible or invisible, making it difficult to 
express them in two-dimensional forms, such as orthogonally or isometrically.

Although numerous studies have shown that dynamic geometry tools can assist students in express-
ing three-dimensional structures in two dimensions (e.g., Oldknow & Tetlow, 2008; Simpson et al., 
2006), the introduction of technology to geometry instruction has historically been met with opposition 
(Bolt, 1991). The Royal Society’s working group on teaching and learning geometry (2001) advised 
that students pay more attention to studying three-dimensional shapes and that they learn them more 
effectively through the use of digital tools (such as virtual manipulatives and dynamic geometry tools) 
in the classroom. Taking this into account, Oldknow and Tetlow (2008) tested the efficiency of a 3D 
geometry program in small-scale pilot schools before expanding their research to a larger project in a 
set of Hampshire schools in the United Kingdom. Their research found that working with such software 
— which allows students to build two-dimensional representations of three-dimensional shapes — gives 
students a deeper understanding of three-dimensional shapes as well as a wealth of opportunities for ac-
tive participation, collaboration, and confidence-building. According to Widder and Gorsky (2013), who 
investigated students’ utilization of mathematics software in three-dimensional shape lessons, students 
utilized these tools according to their needs. That is to say, students with different pre-test scores used 
the software for different purposes: those with low spatial skills used it primarily for measuring their 
constructed representations, while those with high spatial abilities used it primarily for self-examination 
(e.g., 50 per cent more constructions and operations than their peers with lower spatial skills) and for 
speeding up mental processes like (re)constructing and rotating.

Despite the fact that all representations have benefits and drawbacks (Friedlander & Tabach, 2001), 
many researchers agree that learning from an appropriate combination of representations with the help 
of technology is more beneficial than learning from a single representation (e.g., single-use of verbal, 
numeric, symbolic, or graphical representations), and geometry software packages provide an environ-
ment where this can happen (Ainsworth, 2006; Hoyles & Noss, 2003; Kaput, 1992; Pape & Tchoshanov, 
2001; Pierce et al., 2011). However, not all of the results/applications of incorporating dynamic tech-
nologies are beneficial. Lessons with these technologies are more difficult to plan (Grandgenett, 2007), 
especially since they demand the use of more student-centred approaches, and they are more challenging 
for teachers to manage in general (Bates, 2005). Furthermore, a lack of teacher knowledge in teaching 
geometry with technology, as well as inconsistent beliefs and goals regarding the use of technology, 
make it much more difficult to develop technology-enhanced lessons. Teachers’ knowledge, beliefs, and 
goals all influence how they teach with technology (Ball et al., 2008; Mishra & Koehler, 2006; Niess, 
2008, Shulman, 1986). While some teachers regard dynamic geometry tools as distractions rather than 
learning aids and find them time-consuming, others see them as a highly useful facilitator and successful 
teaching method (Saralar & Ainsworth, 2017; Saralar-Aras, 2022).

In the study of sample lessons, teaching was strategically supported with GeoGebra, free dynamic 
software for manipulating 3D shapes that may be used individually on tablets or collectively on interac-
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tive boards. This decision was partially pragmatic, as 1.5 million tablets were handed to children and all 
middle school classes in Turkey were equipped with interactive whiteboards from 2011. To conclude, by 
using dynamic geometry software, the third principle of this approach intends to provide students with 
technology-enhanced experiences of an acceptable combination of 2D representations of 3D shapes.

Active

The fourth principle relates to active learning settings in which students manage the use of concrete 
manipulatives rather than watching teacher constructs and reproducing drawings on the board, as seen in 
various studies (e.g., Saralar, 2020). Active lessons in the RETA model are more than merely a contrast to 
passive learning of Chi (2009) and Schank (1994). Although the activities involved could be described as 
constructive (e.g., students building cube constructions for themselves) and sometimes interactive (e.g., 
looking at students’ cube-constructions and solutions and receiving feedback on them) in the literature 
(see Chi, 2009), it was chosen to use the term active because this principle refers to the involvement of 
learners as active participants. With the active principle, students are intended to engage in the learning 
process through the control of manipulatives. This is intended to increase students’ motivation as well as 
their academic performance in the intended topics. The next paragraphs detail how concrete manipula-
tives were used to make students active, review assertions about their use and advantages in geometry, 
and examine how they were used in the sample lessons.

To deliver middle school mathematics in the past, teachers depended on workbooks and memory. 
Nevertheless, educators have argued for over two decades that these techniques are “ineffective and 
outdated” (Cain-Caston, 1996, p.271). Many researchers who compared standard teaching techniques 
to alternative methods, such as concrete manipulatives, discovered that children perform better with al-
ternative methods (An & Tillman, 2015; Driscoll, 1983; Kong & Mohd-Matore, 2022; Suydam, 1984). 
Concrete manipulatives are “objects that can be handled by an individual in a sensory manner during 
which conscious and unconscious mathematical thinking will be fostered” (Swan & Marshall, 2010, 
p.14). Concrete manipulatives are also previously defined as “models that incorporate mathematical 
concepts, appeal to several senses and can be touched and moved around by students”, which incorporates 
the author’s notion of making students active (Hynes, 1986, p.11). Unit cubes, such as multilink cubes 
or linking cubes, and unifix cubes are referred to as concrete manipulatives in the sample lesson plans.

In the literature, there is no unanimity on the use of concrete manipulatives. While some researchers 
argue against manipulatives (e.g., Ross, 1989; Uttal et al., 1997), others argue in favour of them (e.g., 
Moch, 2001; Van de Walle et al., 2010).

The author agrees with proponents who believe based on their empirical study that manipulatives work 
if specific circumstances are met. Plastics cannot teach mathematics, as Ball (1992) emphasizes with 
the following words: “Understanding does not travel through the fingertips and the arm… Mathematical 
ideas really do not reside in cardboard and plastic materials.” (p.47). Using manipulatives does not help 
students learn new mathematics quickly. Many academics have identified specific circumstances that 
make manipulatives helpful, such as effective lesson plans and students’ desire to learn meaningfully 
(Carbonneau et al., 2013; Furner & Worrell, 2017; Moch, 2001). Instruction, for example, is stressed 
as a critical element. The way teachers teach with manipulatives determines how effective manipula-
tives are. Carbonneau and colleagues (2013) conducted a meta-analysis using 7237 students from 55 
studies to determine the usefulness of teaching mathematics with concrete manipulatives. Their results 
showed that manipulatives offer greater learning than standard approaches that simply supply abstract 
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mathematical symbols. Instruction was shown to regulate the connection between students’ learning and 
their use of concrete manipulatives. It also depends on students’ understanding of what manipulatives 
represent, and on the teacher’s directions and assistance throughout the classroom exercise (Uttal et al., 
1997). According to theories in the literature, concrete manipulatives aid learning when they promote 
any of the following instructional characteristics:

•	 Providing chances for student-centered research on the subject (Kirschner et al., 2006; Mayer, 
2004),

•	 Assisting students in their abstract reasoning (Bruner, 1964; Montessori, 1964; Piaget, 1962),
•	 Providing physical enactment (Biazak et al., 2010; Engelkamp et al., 1994; Kormi-Nouri et al., 

1994),
•	 Encouraging students to apply what they’ve learned in class to real-life situations (Baranes et al., 

1989; Rittle-Johnson & Koedinger, 2005; Tindall-Ford & Sweller, 2006).

Environments in which manipulatives are utilized for meaningful learning by building on prior 
knowledge and challenging students to reflect and think are another example of these circumstances 
(Baroody, 1989; Furner & Worrell, 2017). Both Baroody (1989) and Furner and Worrell (2017) stress 
that manipulatives aid students when they use inquiry to connect their prior knowledge to the desired 
learning goals. When students have prior experience with the subject (Sowell, 1989) and use it regularly 
over time (Marzolf & DeLoache, 1994), the use of manipulatives in the classroom leads to even higher 
learning results.

Teachers frequently use unit cubes to teach three-dimensional shapes in geometry classes. According 
to Swan and Marshall’s (2010) study of 249 teachers from New South Wales, cubes are the most com-
monly used manipulative in introducing three-dimensional shapes and the third most commonly used 
manipulative in mathematics classes (after blocks and polyhedrons) followed by unifix cubes and multilink 
cubes. Although there are pros and cons to utilizing these manipulatives, many researchers agree that 
they are helpful for teaching and learning mathematics and that they improve students’ understanding 
of mathematics by enabling them to explore the topic actively (e.g., Canny, 1984; Clements & Battista, 
1990; Skemp, 1987; Suydam, 1984). Children’s use of concrete manipulatives can help them visualize 
shapes better and so improve their mathematics understanding. Regarding this, “The relevant applica-
tion of manipulatives to … classroom situations helps students visualize and develop problem-solving 
strategies”, says Moch (2001, p.83). Furthermore, concrete manipulatives, particularly cubes, can help 
children acquire more meaningful mathematical thinking and reasoning by allowing them to build and 
compare amounts, and allowing them to create interlinked understandings of mathematical ideas (Stein 
& Bovalino, 2001). Stated differently, via their experience with concrete manipulatives, children may 
integrate and link a range of concepts and develop a profound knowledge of them. Concrete manipula-
tives may also give students concrete and exploratory experiences for two-dimensional representations, 
allowing them to embody the problem scenario by touching, manipulating, and determining the proper 
structure (e.g., see Carroll & Porter, 1997).

However, if teachers monopolize the use of these manipulatives and students are not given oppor-
tunities to actively engage with them by touching and moving them around, teaching polycubes with 
them may not be particularly useful. The way teachers use concrete manipulatives in their lessons on 
polycubes, as well as how they teach other mathematics concepts, is crucial to students’ success (Alfieri 
et al., 2011; Wearne & Hiebert, 1988). Saralar (2020) observed that teachers dominated the use of ma-
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nipulatives in all observed Turkish classes, and as a result, children appeared to be disengaged with the 
instructional material. This might be a major factor in children’s poor performance on three-dimensional 
shape comprehension tests. Three-dimensional shapes education must become more student-centred, 
with classrooms where students actively engage in rich mathematical activities during which they have 
control over manipulatives, to boost students’ engagement and improve their knowledge of shapes.

Furthermore, the disparity in the usage of manipulatives in the literature indicated a very particular 
rationale for why they might be useful in the situations investigated in this study in Turkey. Most people 
who argue against manipulatives utilize blocks to represent abstract ideas, such as place value and percent-
ages, which are represented by addition and subtraction (e.g., Bartolini-Bussi & Mariotti, 2002; Chandler 
& Kamii, 2009; Fuson & Briars, 1990). The active principle of the RETA model, on the other hand, is 
quite similar to how tangible manipulatives are employed in chemistry. Students in chemistry create a 
model containing atoms and structures so that they do not have to continually envision 3D structures; 
instead, they externalize these into a 3D model (see Hegarty et al., 2013). In a similar vein, in the sample 
RETA-based lessons, students construct polycubes from concrete unit cubes to externalize them so that 
they don’t have to envision them while drawing orthogonal and isometric views. Constructions will not 
reflect anything else in mathematics (for example, abstract symbols), but will simply be externalized 
to allow students to draw them themselves. As a result, the researcher’s goal in utilizing manipulatives 
is to teach symbolic relations rather than traditional mathematical facts. To summarize, active lessons 
strive to create learner-centered environments in which students interact with concrete manipulatives. 
The designed lessons (one of which is in Appendix 1) are meant to allow students to explore polycubi-
cal forms not just via student-centred activities with unit cubes but also through chances for reflection 
through teacher-led conversations.

SOLUTIONS AND RECOMMENDATIONS

The RETA model’s principles may be applied to a wide range of topics in mathematics. The work on this 
has already started, and Turkish mathematics teachers started to prepare RETA-based lesson plans for 
various topics (other than 3D shapes’ orthogonal and isometric drawings) in mathematics from polygons 
to types of triangles (e.g., Esen & Saralar-Aras, 2021). Other teachers and/or teacher-researchers than 
the author could continue designing RETA-based lessons and evaluate the effectiveness of these lessons 
by measuring students’ academic performance through various types of assessments.

The RETA principles are not claimed to be sufficient; additional principles can be created or imple-
mented, but the presented principles are required for teaching three-dimensional shapes in the studied 
context in Turkey. Furthermore, lesson plans do not have to employ all of the model’s principles in a 
single lesson plan; rather, they may use them in their overall teaching of the objectives from mathematics.

Moreover, such research in real classrooms can provide valuable insights for teachers, educators, 
programme developers and policymakers. Teachers may gain self-awareness about their practices while 
applying RETA principles, whilst educators can use and trial the model in other contexts to see whether 
it meets the needs of their specific contexts. Finally, policymakers and programme developers can benefit 
from the findings. In particular, the Turkish Ministry of National Education and programme developers 
working for the ministry might be interested in the study as the sample lesson plans were developed 
specifically for the Turkish context.
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FUTURE RESEARCH DIRECTIONS

Each classroom has a different student profile, particular traditions and contextual needs with its own 
atmosphere. While there are various ways of teaching mathematics, there can be particular ways that 
work for specific contexts. The RETA model was developed for the Turkish context, and sample les-
son plans were developed and found to be effective in teaching orthogonal and isometric drawings of 
polycubes. In a quasi-experimental study with more than 200 students, scores of the RETA intervention 
classes improved almost up to 100% in orthogonal drawings and almost 90% in isometric drawings that 
are equivalent to national exam, whilst the final performance was about 60% in orthogonal drawings 
and 45% in isometric drawings in the traditional classes (Saralar, 2020; published elsewhere). Although 
it was developed as a response to the need in the Turkish context, clearly, there are various ways that 
the need could be met. This model is only one of many possibilities that might have been developed.

The chapter outlined the need for student-centred environments, the need to motivate teachers to 
teach 3D shapes, the need to integrate realistic scenarios to increase student engagement, and the need to 
provide technologies that can help both students’ learning and teachers’ teaching. Therefore, the RETA 
was created to address the specific needs of middle school children in the Turkish context. Overall, the 
results show that RETA-based lessons helped students score better on the national exam. However, this 
does not imply that the RETA model and RETA-based teachings are flawless, prompting the issue of 
how the RETA model and RETA-based lessons may be improved. For example, for future studies, it is 
possible to supplement other principles to the RETA principles according to the needs in other contexts. 
For example, in retrospect, the author wonders why, as a researcher who appreciates conversation in 
her classes, she didn’t explicitly list dialogue as a principle. It is suspected that one explanation is as 
a Turkish mathematics teacher herself, she resisted having it as a principle while knowing it would be 
challenging in the Turkish context.

Last but not least, there is considerable scope for this model to be tested and further developed in 
a range of contexts. The RETA model is trialled as a quasi-experiment only for one topic, orthogonal 
and isometric drawings of polycubes, which is from a middle school programme in Turkey. It could be 
utilized for other topics, as well as other levels of education. There is a much greater geometric world 
that the RETA model could be instantiated, in other years in middle schools, and other towns and coun-
tries. Moreover, in addition to the RETA model itself, the RETA-based lesson plans can be tested and 
improved. Having a greater sample of teachers that have met specific criteria such as years of experience 
and background of teaching would have been ideal when testing RETA-based lessons.

CONCLUSION

To conclude, study on students’ geometry proficiency has long been considered an important research 
issue in mathematics (Clements, 2003; Clements & Battista, 1992). This chapter introduced a reform-
based mathematics teaching model, the RETA model, as well as design decisions made during its ap-
plication in sample lessons to teach geometry objectives. It is anticipated that this model, as well as the 
lesson plans that were developed utilizing the RETA principles, would be useful in the future for teachers 
teaching in Turkey, and maybe beyond.

To note, the chapter was derived from the author’s PhD thesis titled “Designing Lessons to Help 
Middle School Students Learn about Orthogonal and Isometric Drawings of Three-dimensional Shapes”.



56

RETA Model for Teaching Mathematics
﻿

ACKNOWLEDGMENT

This research was supported by the Ministry of National Education in Turkey [YLSY-1416- 2014/11]; 
and the University of Nottingham [NOT-24/03/2017].

REFERENCES

Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representa-
tions. Learning and Instruction, 16(3), 183–198. doi:10.1016/j.learninstruc.2006.03.001

Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction 
enhance learning? Journal of Educational Psychology, 103(1), 1–18. doi:10.1037/a0021017

An, S. A., & Tillman, D. A. (2015). Music activities as a meaningful context for teaching elementary 
students mathematics: A quasi-experiment time-series design with a randomly assigned control group. 
European Journal of Science and Mathematics Education, 3(1), 45–60. doi:10.30935cimath/9420

Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: 
Introduction and review. ZDM, 47(7), 1047–1065. doi:10.100711858-015-0738-8

Bakó, M. (2003). Differing projecting methods in teaching spatial geometry. Proceedings of the Third 
European Research in Mathematics Education, 1–9. http://www.mathematik.tu-dortmund.de/~erme/
CERME3/Groups/TG7/TG7_Bako_cerme3.pdf

Ball, D. L. (1992). Magical hopes: Manipulatives and the reform of math education. American Educator. 
The Professional Journal of the American Federation of Teachers, 16(2), 14–18.

Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? 
Journal of Teacher Education, 59(5), 389–407. doi:10.1177/0022487108324554

Baranes, R., Perry, M., & Stigler, J. W. (1989). Activation of real-world knowledge in the solution of 
word problems. Cognition and Instruction, 6(4), 287–318. doi:10.12071532690xci0604_1

Barke, H.-D., & Engida, T. (2001). Structural chemistry and spatial ability in different cultures. Chemistry 
Education Research and Practice, 2(3), 227–239. doi:10.1039/B1RP90025K

Baroody, A. J. (1989). Manipulatives don’t come with guarantees. The Arithmetic Teacher, 37(2), 4–5. 
https://eric.ed.gov/?id=EJ405968. doi:10.5951/AT.37.2.0004

Bartolini-Bussi, M. G., & Mariotti, M. A. (2002). Semiotic mediation in the mathematics classroom: 
Artifacts and signs after a Vygotskian perspective. In L. English, M. G. Bartolini-Bussi, R. Jones, & D. 
Tirosh (Eds.), Handbook of international research in mathematics education (2nd ed., pp. 746–783). Law-
rence Erlbaum. http://math.unipa.it/~grim/YESS-5/Semiotic%20mediation%20Ch%2028%20Mariotti.pdf

Bayart, C., Gos, C., Hindelang, C., & Keyling, M. A. (2000). Voir et raisoner: À laconquête de l’espace 
au collège [See and reason: The survey of space at the college]. Repères IREM, 33(1), 51–73. https://
publimath.univ-irem.fr/numerisation/PX/IGR14026/IGR14026.pdf

http://www.mathematik.tu-dortmund.de/~erme/CERME3/Groups/TG7/TG7_Bako_cerme3.pdf
http://www.mathematik.tu-dortmund.de/~erme/CERME3/Groups/TG7/TG7_Bako_cerme3.pdf
https://eric.ed.gov/?id=EJ405968
http://math.unipa.it/~grim/YESS-5/Semiotic%20mediation%20Ch%2028%20Mariotti.pdf
https://publimath.univ-irem.fr/numerisation/PX/IGR14026/IGR14026.pdf
https://publimath.univ-irem.fr/numerisation/PX/IGR14026/IGR14026.pdf


57

RETA Model for Teaching Mathematics
﻿

Bayrakdar-Çiftçi, Z., Akgün, L., & Deniz, D. (2013). Teachers’ opinions and solution suggestions re-
garding encountered issues on the ninth-grade mathematics curriculum. Anadolu University Educational 
Sciences Institute Journal, 3(1), 2–21.

Ben-Haim, D., Lappan, G., & Houang, R. T. (1985). Visualizing rectangular solids made of small cubes: 
Analyzing and affecting student performance. Educational Sciences in Mathematics, 16(4), 389–409. 
doi:10.1007/BF00417194

Bennett, C. A. (2010). It’s hard getting kids to talk about math: Helping new teachers improve math-
ematical discourse. Action in Teacher Education, 32(3), 79–89. doi:10.1080/01626620.2010.10463561

Biazak, J. E., Marley, S. C., & Levin, J. R. (2010). Does an activity-based learning strategy improve pre-
school children’s memory for narrative passages? Early Childhood Research Quarterly, 25(4), 515–526. 
doi:10.1016/j.ecresq.2010.03.006

Birgin, O., & Acar, H. (2020). The effect of computer-supported collaborative learning using GeoGebra 
software on 11th-grade students’ mathematics achievement in exponential and logarithmic functions. 
International Journal of Mathematical Education in Science and Technology, 1–18. doi:10.1080/0020
739X.2020.1788186

Blum, W., Artigue, M., Sträßer, R., & Van den Heuvel-Panhuizen, M. (2019). European didactic tradi-
tions in mathematics: Introduction and overview. In W. Blum, M. Artigue, M. A. Mariotti, R. Sträßer, 
& M. Van den Heuvel-Panhuizen (Eds.), European Traditions in Didactics of Mathematics (pp. 1–11). 
Springer. doi:10.1007/978-3-030-05514-1_1

Bolt, B. (1991). Mathematics meets technology. Cambridge University Press.

Bruner, J. S. (1964). The course of cognitive growth. The American Psychologist, 19(1), 1–15. doi:10.1037/
h0044160

Bruner, J. S. (2017). A study of thinking. Routledge., doi:10.4324/9781315083223

Cain-Caston, M. (1996). Manipulative queen. Journal of Instructional Psychology, 23(4), 270.

Canny, M. E. (1984). The relationship of manipulative materials to achievement in three areas of fourth-
grade mathematics: Computation, concept development and problem-solving. Dissertation Abstracts 
International, 45, 775–776. http://hdl.handle.net/10919/106313

Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching math-
ematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380–400. doi:10.1037/
a0031084

Carreira, S., & Jacinto, H. (2019). A model of mathematical problem solving with technology: The case 
of Marco solving-and-expressing two geometry problems. In Mathematical problem solving (pp. 41–62). 
Springer. doi:10.1007/978-3-030-10472-6_3

Carroll, W. M., & Porter, D. (1997). Invented strategies can develop meaningful mathematical procedures. 
Teaching Children Mathematics, 3(7), 370–374. doi:10.5951/TCM.3.7.0370

http://hdl.handle.net/10919/106313


58

RETA Model for Teaching Mathematics
﻿

Chandler, C. C., & Kamii, C. (2009). Giving change when payment is made with a dime: The difficulty 
of tens and ones. Journal for Research in Mathematics Education, 40(2), 97–118. doi:10.2307/40539328

Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating 
learning activities. Topics in Cognitive Science, 1(1), 73–105. doi:10.1111/j.1756-8765.2008.01005.x 
PMID:25164801

Christou, C., Jones, K., Mousoulides, N., & Pittalis, M. (2006). Developing the 3DMath dynamic geometry 
software: Theoretical perspectives on design. The International Journal for Technology in Mathematics 
Education, 13, 168–174. https://www.learntechlib.org/p/107486/

Ciftci, O., & Tatar, E. (2015). Teacher opinions about the updated secondary mathematics curriculum. 
Turkish Journal of Computer and Mathematics Education, 6(2), 285–298. doi:10.16949/turcomat.15375

Clements, D. H. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin, & D. Schifter 
(Eds.), A research companion to principles and standards for school mathematics (pp. 151–178). Na-
tional Council of Teachers of Mathematics.

Clements, D. H., & Battista, M. T. (1990). Constructive learning and teaching. The Arithmetic Teacher, 
38(1), 34–35. doi:10.5951/AT.38.1.0034

Clements, D. H., & Battista, M. T. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), 
Handbook of research on mathematics teaching and learning (1st ed., pp. 420–464). Macmillan.

Cobb, P. (1994). An exchange: Constructivism in mathematics and science education. Educational 
Researcher, 23(7), 4. doi:10.2307/1176932

Cobb, P., & Yackel, E. (1995). Constructivist, emergent, and socio-cultural perspective in the context of 
development research. In Proceedings of the Annual Conference of North American Chapter of the Inter-
national Group for Psychology of Mathematics Education. Annual Conference of North American Chapter 
of the International Group for Psychology of Mathematics Education. https://eric.ed.gov/?id=ED389535

Cooper, B., & Harries, T. (2009). Realistic contexts, mathematics assessment, and social class: Les-
sons for assessment policy from an English research programme. In Words and worlds (pp. 93–110). 
doi:10.1163/9789087909383_007

Cooper, M., & Sweller, J. (1989). School students’ representations of solids. Journal for Research in 
Mathematics Education, 20(2), 202–212. doi:10.2307/749283

Cornell, C. (1999). I hate math! I couldn’t learn it, and I can’t teach it! Childhood Education, 75(4), 
225–230. doi:10.1080/00094056.1999.10522022

De Lange, J. (1996). Using and applying mathematics in education. In A. J. Bishop, K. Clements, C. 
Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education: Part 1 
(pp. 49–97). Springer Netherlands. doi:10.1007/978-94-009-1465-0_4

Dickinson, P., & Eade, F. (2005). Trialling realistic mathematics education (RME) in English secondary 
schools. Proceedings of the British Society for Research into Learning Mathematics, 25(3), 1–14. http://
www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-25-3-1.pdf

https://www.learntechlib.org/p/107486/
https://eric.ed.gov/?id=ED389535
http://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-25-3-1.pdf
http://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-25-3-1.pdf


59

RETA Model for Teaching Mathematics
﻿

Dickinson, P., Eade, F., Gough, S., & Hough, S. (2010). Using realistic mathematics education with 
low and high attaining pupils in secondary schools. In M. Joubert & P. Andrews (Eds.), Proceedings 
of the British Congress for Mathematics Education (pp. 73–80). https://www.researchgate.net/publica-
tion/266487229_Using_Realistic_Mathematics_Education_with_low_to_middle_attaining_pupils_in_
secondary_schools

Dickinson, P., & Hough, S. (2012). Using realistic mathematics education in UK classrooms. In P. 
Nickolson (Ed.), Realistic mathematics education impact booklet. https://www.hoddereducation.co.uk/
media/Documents/Maths/Using-Realistic-Maths-Education-in-UK-classrooms.pdf

Doruk, B. K. (2014). The educational approaches of Turkish pre-service elementary mathematics teach-
ers in their first teaching practices: Traditional or constructivist? The Australian Journal of Teacher 
Education, 39(10), 113–134. doi:10.14221/ajte.2014v39n10.8

Driscoll, M. J. (1983). Research within reach: Secondary school mathematics. National Council of 
Teachers of Mathematics & CEMREL, Inc. https://eric.ed.gov/?id=ED225842

Durkin, K., & Rittle-Johnson, B. (2012). The effectiveness of using incorrect examples to support 
learning about decimal magnitude. Learning and Instruction, 22(1), 206–214. doi:10.1016/j.learnin-
struc.2011.11.001

Duval, R. (1998). Geometry from a cognitive point of view. In Reasoning in geometry (pp. 37–52). 
https://ci.nii.ac.jp/naid/10020806198/

Eade, F., & Dickinson, P. (2006). Exploring realistic mathematics education in English schools. In J. 
Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th conference of the 
international group for the psychology of mathematics education (Vol. 3, pp. 1–8). Academic Press.

Engelkamp, J., Zimmer, H. D., Mohr, G., & Sellen, O. (1994). Memory of self-performed tasks: 
Self-performing during recognition. Memory & Cognition, 22(1), 34–39. doi:10.3758/BF03202759 
PMID:8035683

Esen, B., & Saralar-Aras, I. (2021). Designing lesson plans for sustainable development focused education 
in the context of teaching polygons to middle school students. Proceedings of the Second International 
Academician Studies Congress, 1–8.

Evans, S., & Swan, M. (2014). Developing students’ strategies for problem-solving in mathematics: The 
role of pre-designed “sample student work”. Educational Designer, 2(7), 1–31. https://www.education-
aldesigner.org/ed/volume2/issue7/article25/pdf/ed_2_7_evans_swan_14.pdf

Fredricks, J. A., Hofkens, T., Wang, M., Mortenson, E., & Scott, P. (2017). Supporting girls’ and boys’ 
engagement in maths and science learning: A mixed-methods study. Journal of Research in Science 
Teaching, 55(2), 271–298. doi:10.1002/tea.21419

Freudenthal, H. (1971). Geometry between the devil and the deep sea. In H.-G. Steiner (Ed.), The teach-
ing of geometry at the pre-college level: Proceedings of the second CSMP international conference co-
sponsored by Southern Illinois University and Central Midwestern Regional Educational Laboratory 
(pp. 137–159). Springer Netherlands. 10.1007/978-94-017-5896-3_10

https://www.researchgate.net/publication/266487229_Using_Realistic_Mathematics_Education_with_low_to_middle_attaining_pupils_in_secondary_schools
https://www.researchgate.net/publication/266487229_Using_Realistic_Mathematics_Education_with_low_to_middle_attaining_pupils_in_secondary_schools
https://www.researchgate.net/publication/266487229_Using_Realistic_Mathematics_Education_with_low_to_middle_attaining_pupils_in_secondary_schools
https://www.hoddereducation.co.uk/media/Documents/Maths/Using-Realistic-Maths-Education-in-UK-classrooms.pdf
https://www.hoddereducation.co.uk/media/Documents/Maths/Using-Realistic-Maths-Education-in-UK-classrooms.pdf
https://eric.ed.gov/?id=ED225842
https://ci.nii.ac.jp/naid/10020806198/
https://www.educationaldesigner.org/ed/volume2/issue7/article25/pdf/ed_2_7_evans_swan_14.pdf
https://www.educationaldesigner.org/ed/volume2/issue7/article25/pdf/ed_2_7_evans_swan_14.pdf


60

RETA Model for Teaching Mathematics
﻿

Freudenthal, H. (1973). Mathematics as an educational task. Reidel. doi:10.1007/BF00121085

Freudenthal, H. (1987). Mathematics starting and staying in reality. In I. Wirszup, & R. Street (Eds.), 
Proceedings of the USCMP conference on mathematics education on development in school mathemat-
ics around the world. NCTM.

Friedlander, A., & Tabach, M. (2001). Promoting multiple representations in algebra. In A. Cuoco (Ed.), 
The roles of representation in school mathematics (pp. 173–184). NCTM.

Fujita, T., Kondo, Y., Kumakura, H., & Kunimune, S. (2017). Students’ geometric thinking with cube 
representations: Assessment framework and empirical evidence. The Journal of Mathematical Behavior, 
46(1), 96–111. doi:10.1016/j.jmathb.2017.03.003

Furner, J., & Worrell, N. (2017). The importance of using manipulatives in teaching math today. Trans-
formations, 3(1), 1–25. https://nsuworks.nova.edu/transformations/vol3/iss1/2

Fuson, K. C., & Briars, D. J. (1990). Using a base-ten blocks learning/teaching approach for first- and 
second-grade place-value and multidigit addition and subtraction. Journal for Research in Mathematics 
Education, 21(3), 180–206. doi:10.2307/749373

Gambari, I. A., Balogun, S. A., & Alfa, A. S. (2014). Efficacy of interactive whiteboard on psychomo-
tor skills achievement of students in isometric and orthographic projection. Contemporary Educational 
Technology, 5(4), 316–330. doi:10.30935/cedtech/6133

Gemert, S. B. (2015). All positive action starts with criticism: Hans Freudenthal and the didactics of 
mathematics. Springer. doi:10.1007/978-94-017-9334-6

Goodall, J., Johnston-Wilder, S., & Russell, R. (2017). The emotions experienced while learning math-
ematics at home. In U. X. Eligio (Ed.), Understanding 284 emotions in mathematical thinking and 
learning (pp. 295–313). Academic Press. doi:10.1016/B978-0-12-802218-4.00011-X

Gravemeijer, K. P. E. (1994). Developing realistic mathematics education. CD-ß Press/Freudenthal Institute.

Gravemeijer, K. P. E. (2001). Developmental research: Fostering a dialectic relation between theory 
and practice. In J. Anghileri (Ed.), Principles and practice in arithmetic teaching (pp. 147–161). Open 
University Press.

Gürbüz, M. Ç., & Agsu, M. (2017). Dialogic teaching model for ninth class students to conceptual-
ize inequalities. Journal of Education and Practice, 8(1), 171–187. https://files.eric.ed.gov/fulltext/
ED582086.pdf

Hegarty, M., Stieff, M., & Dixon, B. L. (2013). Cognitive change in mental models with experience in 
the domain of organic chemistry. Journal of Cognitive Psychology, 25(2), 220–228. doi:10.1080/2044
5911.2012.725044

Hofmann, R., & Mercer, N. (2016). Teacher interventions in small group work in secondary mathematics 
and science lessons. Language and Education, 30(5), 400–416. doi:10.1080/09500782.2015.1125363

https://nsuworks.nova.edu/transformations/vol3/iss1/2
https://files.eric.ed.gov/fulltext/ED582086.pdf
https://files.eric.ed.gov/fulltext/ED582086.pdf


61

RETA Model for Teaching Mathematics
﻿

Hough, S., Solomon, Y., Dickinson, P., & Gough, S. (2017). Investigating the impact of a realistic math-
ematics education approach on achievement and attitudes in post-16 GCSE resit classes. Manchester 
Metropolitan University/The Nuffield Foundation.

Hoyles, C., & Noss, R. (2003). What can digital technologies take from and bring to research in 
mathematics education? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung 
(Eds.), Second international handbook of mathematics education (pp. 323–349). Springer Netherlands. 
doi:10.1007/978-94-010-0273-8_11

Hynes, M. C. (1986). Selection Criteria. The Arithmetic Teacher, 33(6), 11–13. doi:10.5951/AT.33.6.0011

Jones, K., Fujita, T., & Kunimune, S. (2012). Representations and reasoning in 3-D geometry in lower 
secondary school. In T. Y. Tso (Ed.), Proceedings of the 36th conference of the international group for 
the psychology of mathematics education (Vol. 2, pp. 229–346). The Psychology of Mathematics Educa-
tion. https://eprints.soton.ac.uk/445627/1/Jones_etc_represent_reason3D_PME36_2012.pdf

Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem-solving is superior to studying 
worked examples. Journal of Educational Psychology, 93(3), 579–588. doi:10.1037/0022-0663.93.3.579

Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 1008–1022. doi:10.1111/
cogs.12107 PMID:24628487

Kaput, J. J. (1992). Technology and mathematics education. In Handbook of research on mathematics 
teaching and learning (pp. 515–556). https://www.learntechlib.org/primary/p/5474/

Kazak, S., Wegerif, R., & Fujita, T. (2015). The importance of dialogic processes to conceptual develop-
ment in mathematics. Educational Studies in Mathematics, 90(2), 105–120. doi:10.100710649-015-9618-y

Keune, F. J. (1998). Naar de knoppen [Inaugural lecture]. In NRC/Handelsblad. Catholic University. 
https://lib.ugent.be/en/catalog/rug01:000433729

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not 
work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-
based teaching. Educational Psychologist, 41(2), 75–86. doi:10.120715326985ep4102_1

Klančar, A., Starčič, A. I., Cotič, M., & Žakelj, A. (2021). Problem-based geometry in seventh grade: 
Examining the effect of path-based vs. conventional instruction on learning outcomes. International 
Journal of Emerging Technologies in Learning, 16(12), 16–35. doi:10.3991/ijet.v16i12.21349

Konan, N., & Yilmaz, S. (2017). Teachers’ views on teacher performance assessment: A mixed-method 
research. Proceedings of the 26th International Educational Sciences Conference, 1–3. https://dergipark.
org.tr/download/journal-file/11372

Konan, N., & Yilmaz, S. (2018). Ogretmen iliskileri performans degerlendirmeye iliskin ogretmen 
gorusleri: Bir karma yontem arastirmasi. Milli Egitim, 219(1), 137–160. https://dergipark.org.tr/tr/pub/
milliegitim/issue/39923/473428

Kong, S. F., & Mohd-Matore, M. E. E. (2022). Can a Science, Technology, Engineering, and Math-
ematics (STEM) approach enhance students’ mathematics performance? Sustainability, 14(1), 379. 
doi:10.3390u14010379

https://eprints.soton.ac.uk/445627/1/Jones_etc_represent_reason3D_PME36_2012.pdf
https://www.learntechlib.org/primary/p/5474/
https://lib.ugent.be/en/catalog/rug01:000433729
https://dergipark.org.tr/download/journal-file/11372
https://dergipark.org.tr/download/journal-file/11372
https://dergipark.org.tr/tr/pub/milliegitim/issue/39923/473428
https://dergipark.org.tr/tr/pub/milliegitim/issue/39923/473428


62

RETA Model for Teaching Mathematics
﻿

Kormi-Nouri, R., Nyberg, L., & Nilsson, L. G. (1994). The effect of retrieval enactment on recall of 
subject-performed tasks and verbal tasks. Memory & Cognition, 22(6), 723–728. doi:10.3758/BF03209257 
PMID:7808281

Larkin, K., & Jorgensen, R. (2016). ‘I hate maths: Why do we need to do maths?’ Using iPad video 
diaries to investigate attitudes and emotions towards mathematics in year 3 and year 6 students. Interna-
tional Journal of Science and Mathematics Education, 14(5), 925–944. doi:10.100710763-015-9621-x

Lee, J., & Bednarz, R. (2009). Effect of GIS learning on spatial thinking. Journal of Geography in Higher 
Education, 33(2), 183–198. doi:10.1080/03098260802276714

Liben, L. S. (2007). Education for spatial thinking. In Handbook of child psychology (Vol. 4). Wiley. 
doi:10.1002/9780470147658.chpsy0406

Marton, F., Booth, S., & Booth, S. (2013). Learning and awareness. Routledge., doi:10.4324/9780203053690

Marton, F., Tsui, A. B. M., Chik, P. P. M., Ko, P. Y., & Lo, M. L. (2004). Classroom discourse and the 
space of learning. Routledge., doi:10.4324/9781410609762

Marzolf, D. P., & DeLoache, J. S. (1994). Transfer in young children’s understanding of spatial repre-
sentations. Child Development, 65(1), 1–15. doi:10.2307/1131361 PMID:8131641

Matusiak, B. S. (2017). Daylighting is more than an energy-saving issue. In Energy efficient buildings. 
doi:10.5772/65866

Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The American 
Psychologist, 59(1), 14–19. doi:10.1037/0003-066X.59.1.14 PMID:14736316

Mercer, N., & Sams, C. (2006). Teaching children how to use language to solve maths problems. Lan-
guage and Education, 20(6), 507–528. doi:10.2167/le678.0

Mishra, P., & Koehler, M. J. (2006). Technological pedagogical content knowledge: A framework for 
teacher knowledge. Teachers College Record, 108(6), 1017–1054. doi:10.1177/016146810610800610

Moch, P. L. (2001). Manipulatives work! The Educational Forum,  66(1), 81–87. 
doi:10.1080/00131720108984802

MoNE. (2018). Middle school mathematics program (Grades 5-8). MoNE. https://mufredat.meb.gov.
tr/Dosyalar/2018813171044420-1-2018-80%20Matematik%20Uygulamalar%C4%B1%20Dersi%20
(5-8.%20S%C4%B1n%C4%B1flar).pdf

Montessori, M. (1964). The Montessori method (A. E. George, Trans.). Robert Bentley.

Moyer-Packenham, P., & Bolyard, J. (2002). Exploring representation in the middle grades: Investiga-
tions in geometry with virtual manipulatives. Australian Mathematics Teacher, 58(1), 19–25. https://
digitalcommons.usu.edu/teal_facpub/52/

Mulero, J., Segura, L., & Sepulcre, J. M. (2013). Is maths everywhere? Our students respond. Interna-
tional Association of Technology, Education and Development (IATED), 1–10. http://rua.ua.es/dspace/
handle/10045/27248

https://mufredat.meb.gov.tr/Dosyalar/2018813171044420-1-2018-80%20Matematik%20Uygulamalar%C4%B1%20Dersi%20(5-8.%20S%C4%B1n%C4%B1flar).pdf
https://mufredat.meb.gov.tr/Dosyalar/2018813171044420-1-2018-80%20Matematik%20Uygulamalar%C4%B1%20Dersi%20(5-8.%20S%C4%B1n%C4%B1flar).pdf
https://mufredat.meb.gov.tr/Dosyalar/2018813171044420-1-2018-80%20Matematik%20Uygulamalar%C4%B1%20Dersi%20(5-8.%20S%C4%B1n%C4%B1flar).pdf
https://digitalcommons.usu.edu/teal_facpub/52/
https://digitalcommons.usu.edu/teal_facpub/52/
http://rua.ua.es/dspace/handle/10045/27248
http://rua.ua.es/dspace/handle/10045/27248


63

RETA Model for Teaching Mathematics
﻿

Nardi, E., & Steward, S. (2013). Is mathematics T.I.R.E.D? A profile of quiet disaffection in 
the secondary mathematics classroom. British Educational Research Journal, 29(3), 345–366. 
doi:10.1080/01411920301852

Niess, M. (2008). Mathematics teachers developing technology, pedagogy and content knowledge 
(TPACK). Society for Information Technology and Teacher Education Proceedings, 5297–5304. https://
www.learntechlib.org/primary/p/28121

Oldknow, A., & Tetlow, L. (2008). Using dynamic geometry software to encourage 3D visualisation and 
modelling. The Electronic Journal of Mathematics & Technology, 2(1), 1–8. https://link.gale.com/apps/
doc/A178451802/AONE?u=anon~501ead4c&sid=googleScholar&xid=695b9a4a

Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical un-
derstanding. Theory into Practice, 40(2), 118–127. doi:10.120715430421tip4002_6

Piaget, J. (1962). Play, dreams, and imitation in childhood (C. Gattegno & F. M. Hodgson, Trans.). Norton.

Pierce, R., Stacey, K., Wander, R., & Ball, L. (2011). The design of lessons using mathematics analysis 
software to support multiple representations in secondary school mathematics. Technology, Pedagogy 
and Education, 20(1), 95–112. doi:10.1080/1475939X.2010.534869

Pittalis, M., & Christou, C. (2010). Types of reasoning in 3D geometry thinking and their relation with 
spatial ability. Educational Studies in Mathematics, 75(2), 191–212. doi:10.100710649-010-9251-8

Pribyl, J. R., & Bodner, G. M. (2006). Spatial ability and its role in organic chemistry: A study of four 
organic courses. Journal of Research in Science Teaching, 24(3), 229–240. doi:10.1002/tea.3660240304

Reid, A., Petocz, P., Smith, G., Wood, L., & Dortins, E. (2003). Mathematics students’ conceptions of 
mathematics. New Zealand Journal of Mathematics, 32(Supplementary Issue), 163–172. http://www.
sun.ac.za/english/learning-teaching/ctl/Documents/Reid%20et%20al%202003.pdf

Reisberg, D., & Heuer, F. (2005). Visuospatial images. In A. Miyake & P. Shah (Eds.), The Cam-
bridge handbook of visuospatial thinking (pp. 35–80). Cambridge University Press. doi:10.1017/
CBO9780511610448.003

Renkl, A. (2011). Instruction based on examples. In R. E. Mayer & P. A. Alexander (Eds.), Handbook 
of research on learning and instruction (pp. 272–295). Routledge. https://www.routledgehandbooks.
com/doi/10.4324/9780203839089.ch3

Renkl, A. (2014). Toward an instructionally oriented theory of example-based learning. Cognitive Sci-
ence, 38(1), 1–37. doi:10.1111/cogs.12086 PMID:24070563

Renkl, A. (2017). Learning from worked-examples in mathematics: Students relate procedures to prin-
ciples. ZDM, 49(4), 571–584. doi:10.100711858-017-0859-3

Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical 
problem-solving. Cognition and Instruction, 23(3), 313–349. doi:10.12071532690xci2303_1

https://www.learntechlib.org/primary/p/28121
https://www.learntechlib.org/primary/p/28121
https://link.gale.com/apps/doc/A178451802/AONE?u=anon~501ead4c&sid=googleScholar&xid=695b9a4a
https://link.gale.com/apps/doc/A178451802/AONE?u=anon~501ead4c&sid=googleScholar&xid=695b9a4a
http://www.sun.ac.za/english/learning-teaching/ctl/Documents/Reid%20et%20al%202003.pdf
http://www.sun.ac.za/english/learning-teaching/ctl/Documents/Reid%20et%20al%202003.pdf
https://www.routledgehandbooks.com/doi/10.4324/9780203839089.ch3
https://www.routledgehandbooks.com/doi/10.4324/9780203839089.ch3


64

RETA Model for Teaching Mathematics
﻿

Robertson, C., Nelson, T. A., Jelinski, D. E., Wulder, M. A., & Boots, B. (2009). Spatial-temporal analysis 
of species range expansion: The case of the mountain pine beetle, dendroctonus ponderosae. Journal of 
Biogeography, 36(8), 1446–1458. doi:10.1111/j.1365-2699.2009.02100.x

Ross, S. H. (1989). Parts, wholes, and place value: A developmental view. The Arithmetic Teacher, 36(6), 
47–51. doi:10.5951/AT.36.6.0047

Ruthven, K., Mercer, N., Taber, K. S., Guardia, P., Hofmann, R., Ilie, S., Luthman, S., & Riga, F. (2017). 
A research-informed dialogic-teaching approach to early secondary school mathematics and science: 
The pedagogical design and field trial of the epiSTEMe intervention. Research Papers in Education, 
32(1), 18–40. doi:10.1080/02671522.2015.1129642

Salden, R. J. C. M., Aleven, V. A. W. M. M., Renkl, A., & Schwonke, R. (2009). Worked examples and tu-
tored problem-solving. Topics in Cognitive Science, 1(1), 203–213. doi:10.1111/j.1756-8765.2008.01011.x 
PMID:25164806

Salomon, G., & Perkins, D. (2005). Do technologies make us smarter? Intellectual amplification 
with, of, and through technology. In R. J. Sternberg & D. D. Preiss (Eds.), Intelligence and technol-
ogy: The impact of tools on the nature and development of human abilities (pp. 71–86). Erlbaum. 
doi:10.4324/9780203824252-11

Saralar, İ. (2020). Designing lessons to help middle school students learn about orthogonal and isometric 
drawings of three-dimensional shapes [Doctoral Thesis, The University of Nottingham]. Nottingham 
eThesis.

Saralar, İ., & Ainsworth, S. (2017). An exploration of middle school mathematics teachers’ beliefs 
and goals regarding GeoGebra: Four cases from the Turkish Republic [Paper Presentation]. European 
Conference on Educational Research (ECER) 2017, Copenhagen, Denmark. https://eera-ecer.de/ecer-
programmes/conference/22/contribution/39865/

Saralar-Aras, İ. (2022). An exploration of middle school mathematics teachers’ beliefs and goals regarding 
a dynamic mathematics tool: GeoGebra. Journal of Research in Science Mathematics and Technology 
Education, 5(SI), 41–63. doi:10.31756/jrsmte.113SI

Schank, R. C. (1994). Active learning through multimedia. IEEE MultiMedia, 1(1), 69–78. 
doi:10.1109/93.295270

Schoenfeld, A. H. (1985). Mathematical problem-solving. Academic Press.

Schoenfeld, A. H. (2013). Reflections on problem-solving theory and practice. The Mathematics Enthu-
siast, 10(1), 9–34. doi:10.54870/1551-3440.1258

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 
15(2), 4–14. doi:10.3102/0013189X015002004

Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal 
for Research in Mathematics Education, 26(2), 114–145. doi:10.2307/749205

https://eera-ecer.de/ecer-programmes/conference/22/contribution/39865/
https://eera-ecer.de/ecer-programmes/conference/22/contribution/39865/


65

RETA Model for Teaching Mathematics
﻿

Simpson, G., Hoyles, C., & Noss, R. (2006). Exploring the mathematics of motion through construc-
tion and collaboration. Journal of Computer Assisted Learning, 22(2), 114–136. doi:10.1111/j.1365-
2729.2006.00164.x

Sinha, T., & Kapur, M. (2021). When problem-solving followed by instruction works: Evidence for 
productive failure. Review of Educational Research, 91(5), 761–798. doi:10.3102/00346543211019105

Skemp, R. R. (1987). The psychology of teaching mathematics (Revised American Edition). Lawrence 
Erlbaum. doi:10.4324/9781315621128

Skemp, R. R. (2012). The psychology of learning mathematics (Expanded American Edition). Routledge. 
doi:10.4324/9780203396391

Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction. Journal for Research 
in Mathematics Education, 20(1), 498–505. doi:10.2307/749423

Stein, M. K., & Bovalino, J. W. (2001). Manipulatives: One piece of the puzzle. Mathematics Teaching 
in the Middle School, 6(6), 356–359. doi:10.5951/MTMS.6.6.0356

Suydam, M. N. (1984). Research report: Manipulative materials. The Arithmetic Teacher, 31(5), 27. 
doi:10.5951/AT.31.5.0027

Swan, P., & Marshall, L. (2010). Revisiting mathematics manipulative materials. Australian Primary 
Mathematics Classroom, 15(2), 13–19. https://files.eric.ed.gov/fulltext/EJ891801.pdf

Tekalmaz, G. (2019). Teacher reviews about reformed high school mathematics curriculum. Kocaeli 
University Education Journal, 2(1), 35–47. doi:10.33400/kuje.548562

The Royal Society. (2001). Teaching and learning geometry 11-19: Report of a Royal Society / Joint 
Mathematical Council working group. The Royal Society. https://royalsociety.org/-/media/Royal_Soci-
ety_Content/policy/publications/2001/9992.pdf

Tindall-Ford, S., & Sweller, J. (2006). Altering the modality of instructions to facilitate imagination: 
Interactions between the modality and imagination effects. Instructional Science, 34(4), 343–365. 
doi:10.100711251-005-6075-5

Tversky, B. (2005). Functional significance of visuospatial representations. In P. Shah & A. Miyake 
(Eds.), The Cambridge handbook of visuospatial thinking (pp. 1–34). Cambridge University Press. 
doi:10.1017/CBO9780511610448.002

Usiskin, Z. (1987). Resolving the continuing dilemmas in school geometry. In M. M. Lindquist & A. P. 
Shulte (Eds.), Learning and Teaching Geometry, K12: 1987 Yearbook (pp. 17–31). National Council 
of Teachers of Mathematics.

Uttal, D. H., DeLoache, J. S., & Scudder, K. V. (1997). Manipulatives as symbols: A new perspective 
on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 
18(1), 37–54. doi:10.1016/S0193-3973(97)90013-7

https://files.eric.ed.gov/fulltext/EJ891801.pdf
https://royalsociety.org/-/media/Royal_Society_Content/policy/publications/2001/9992.pdf
https://royalsociety.org/-/media/Royal_Society_Content/policy/publications/2001/9992.pdf


66

RETA Model for Teaching Mathematics
﻿

van de Walle, J. A., Karp, K. S., & Bay-Williams, J. M. (2010). Geometric thinking and geometric con-
cepts. In Elementary and middle school mathematics teaching developmentally (7th ed., pp. 402–433). 
Pearson Education. http://xn--webducation-dbb.com/wp-content/uploads/2019/09/John-A.-Van-de-Walle-
Karen-S.-Karp-Jennifer-M.-Bay-Williams-Elementary-and-Middle-School-Mathematics_-Teaching-
Developmentally-Pearson-2012.pdf

van den Heuvel-Panhuizen, M. (2003). The didactical use of models in realistic mathematics education: 
An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 
9–35. doi:10.1023/B:EDUC.0000005212.03219.dc

van den Heuvel-Panhuizen, M. (2019). Didactics of mathematics in the Netherlands. In W. Blum, M. 
Artigue, M. A. Mariotti, R. Sträßer, & M. van den HeuvelPanhuizen (Eds.), European traditions in di-
dactics of mathematics (pp. 57–94). Springer. doi:10.1007/978-3-030-05514-1_3

van den Heuvel-Panhuizen, M., & Drijvers, P. (2014). Realistic Mathematics Education. In S. Lerman 
(Ed.), Encyclopedia of mathematics education (pp. 521–525). Springer Netherlands. doi:10.1007/978-
94-007-4978-8_170

Verstappen, P. (1994). Het dogma: Van de leefwereld naar de wiskundewereld [The dogma: From the 
daily life world to the world of mathematics]. Tijdschrift Voor Didactiek der Bètawetenschappen, 12(2), 
104–129. http://www.fi.uu.nl/publicaties/literatuur/199402-verstappen.pdf

Warwick, P., Vrikki, M., Vermunt, J. D., Mercer, N., & van Halem, N. (2016). Connecting observations 
of student and teacher learning: An examination of dialogic processes in Lesson Study discussions in 
mathematics. ZDM, 48(4), 555–569. doi:10.100711858-015-0750-z

Watson, A., Mason, J., & Mason, J. (2006). Mathematics as a constructive activity: Learners generating 
examples. Routledge. doi:10.4324/9781410613714

Wearne, D., & Hiebert, J. (1988). A cognitive approach to meaningful mathematics instruction: Testing 
a local theory using decimal numbers. Journal for Research in Mathematics Education, 19(5), 371–384. 
doi:10.2307/749172

Wegerif, R., & Scrimshaw, P. (Eds.). (1997). Computers and talk in the primary classroom.

Widder, M., & Gorsky, P. (2013). How students solve problems in spatial geometry while using a software 
application for visualizing 3D geometric objects. Journal of Computers in Mathematics and Science 
Teaching, 32(1), 89–120. https://eric.ed.gov/?q=solve+AND+in&pg=11&id=EJ1006172

Wilson, P. S. (1986). Feature frequency and the use of negative instances in a geometric task. Journal 
for Research in Mathematics Education, 17(2), 130–139. doi:10.2307/749258

Yeh, A., & Nason, R. A. (2004). Toward a semiotic framework for using technology in mathematics 
education: The case of learning 3d geometry. ICCE2004 Proceedings, 1–10.

Yeo, K. K. J., Goh, S., & Koh, E. Z. F. (2005). Exploring plan and elevation geometry with prodesk-
top. Journal of Science and Mathematics Education, 28(1), 125–137. https://repository.nie.edu.sg/
bitstream/10497/15471/1/JSMESEA-28-1-125.pdf

http://xn--webducation-dbb.com/wp-content/uploads/2019/09/John-A.-Van-de-Walle-Karen-S.-Karp-Jennifer-M.-Bay-Williams-Elementary-and-Middle-School-Mathematics_-Teaching-Developmentally-Pearson-2012.pdf
http://xn--webducation-dbb.com/wp-content/uploads/2019/09/John-A.-Van-de-Walle-Karen-S.-Karp-Jennifer-M.-Bay-Williams-Elementary-and-Middle-School-Mathematics_-Teaching-Developmentally-Pearson-2012.pdf
http://xn--webducation-dbb.com/wp-content/uploads/2019/09/John-A.-Van-de-Walle-Karen-S.-Karp-Jennifer-M.-Bay-Williams-Elementary-and-Middle-School-Mathematics_-Teaching-Developmentally-Pearson-2012.pdf
http://www.fi.uu.nl/publicaties/literatuur/199402-verstappen.pdf
https://eric.ed.gov/?q=solve+AND+in&pg=11&id=EJ1006172
https://repository.nie.edu.sg/bitstream/10497/15471/1/JSMESEA-28-1-125.pdf
https://repository.nie.edu.sg/bitstream/10497/15471/1/JSMESEA-28-1-125.pdf


67

RETA Model for Teaching Mathematics
﻿

ADDITIONAL READING

Ben-Chaim, D., Lappan, G., & Houang, R. T. (1989). Adolescents’ ability to communicate spatial in-
formation: Analyzing and effecting students’ performance. Educational Studies in Mathematics, 20(2), 
121–146. doi:10.1007/BF00579459

Fennema, E. H. (1973). Manipulative in the classroom. The Arithmetic Teacher, 20(1), 350–352. 
doi:10.5951/AT.20.5.0350

Furner, J., & Worrell, N. (2017). The importance of using manipulatives in teaching math today. Trans-
formations, 3(1), 1–25. https://nsuworks.nova.edu/transformations/vol3/iss1/2

Saralar, İ., Ainsworth, S., & Wake, G. (2018). BSRLM Report: Helping students learn two-dimensional 
representations of polycubical shapes. Research in Mathematics Education Journal, 21(1), 107–111. do
i:10.1080/14794802.2019.1587668

Saralar, İ., Ainsworth, S., & Wake, G. (2019). Working with a mathematics teacher to teach with technol-
ogy [Paper Presentation]. The European Association for Research in Learning and Instruction Conference 
(EARLI) 2019, RWTH Aachen University, Aachen, Germany. https://bit.ly/3KZdgRj

Saralar, İ., Işıksal, M., & Akyuz, D. (2018). The evaluation of a pre-service mathematics teacher’s 
TPACK: Case of 3D objects. The International Journal for Technology in Mathematics Education, 
25(2), 3–22. doi:10.1564/tme_v25.2.01

Saralar-Aras, İ., & Ainsworth, S. (2020). A categorisation of middle school students’ errors in represent-
ing three-dimensional shapes [Paper Presentation]. The European Association for Research in Learning 
and Instruction (EARLI) JURE 2020 Conference. https://bit.ly/3ulAH13

Thompson, A. G. (1984). The relationship of teachers’ conceptions of mathematics and mathematics 
teaching to instructional practice. Educational Studies in Mathematics, 15(2), 105–127. doi:10.1007/
BF00305892

Zilkova, K., & Partova, E. (2019). Virtual manipulatives with cubes for supporting the learning process. 
International Symposium of Elementary Mathematics Teaching Proceedings: Opportunities in Learning 
and Teaching Elementary Mathematics, 427–438.

KEY TERMS AND DEFINITIONS

Isometric Drawing: A two-dimensional representation of a 3D object with three primary lines 
which are angled away from the observer in the same way with vertical lines staying vertical whereas 
horizontal lines at 30-degree angle to the horizontal plane. Isometric projections; perspective drawings.

Orthogonal Drawing: A two-dimensional representation of a 3D object from the top, bottom, front, 
back, left and right. Orthogonal projections; orthographic projections/drawings; plan/top view, and 
elevations /side views.

Polycube: A three-dimensional shape which is constructed from unit cubes.
RETA Model: A model for teaching mathematics that supports realistic, exploratory, technology-

enhanced, and active learning.
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APPENDIX

The process of designing the following lesson plan was based on the RETA model and the reviewed 
literature. Turkish mathematics teachers had a very tight curriculum to cover with a fixed time for teach-
ing the topic. It should also be noted that the lesson was designed to meet the needs of the children in 
the sample and does not claim to be the ideal option for different educational settings. The researcher 
developed the design decisions based on the RETA model and her ability to construct lesson plans as 
a mathematics teacher and a researcher. As a result, other researchers would make various decisions to 
meet the needs of the students in their classrooms; yet, the decisions were able to meet the needs of the 
current teaching in Turkey.
Each lesson plan comprised a lesson abstract, a lesson structure that specified the amount of time al-
lotted for each activity, and activity descriptions in the form of a teacher’s guide. It is worth noting that 
different classrooms had varied dynamics and student profiles, making it difficult to forecast how the 
lesson would proceed in different classes, such as how students would respond to a specific activity. As 
a result, the mathematics teachers who used these plans did not carefully adhere to the time allotted for 
each task. The first of the four developed lesson plans to teach 2D representations of 3D shapes follows.

Sample Lesson Plan

Lesson abstract: Students focus on the issue of why we need two-dimensional drawings (orthogonal and 
isometric drawings) of three-dimensional objects. They develop an awareness of how drawing views 
from the top, front and sides and isometric drawing are related to real-life practices. They engage with 
several real-life examples and consider how these may be represented mathematically (realistic). After 
engaging with the real-life examples, they construct polycubical shapes corresponding to pictures of 
3D objects (realistic) with linking cubes (active). They create their concrete polycubical shapes in the 
authoring tool, created through GeoGebra. They explore the view from the front by manipulating their 
representation in GeoGebra (technology-enhanced). They develop an awareness of how the front views 
change when they manipulate the shape. They diagnose and remediate and discuss possible reasons for 
worked examples with designed mistakes (exploratory). Lesson 1 focused particularly on a realistic 
principle of the RETA model where students articulate real-world experiences through videos and pho-
tographs on engineering, architecture and a drawing tool AutoCAD.

Lesson Structure

•	 Agenda and aims (5 minutes)
•	 Real-life examples: Engineering, Architecture (10 minutes)
•	 Tools for drawing: AutoCAD, GeoGebra (15 minutes)
•	 Activity 1: Constructing buildings and drawing their front views (15 minutes)
•	 Activity 2: Finding the mistakes (5 minutes)
•	 Conclusion and feedback (5 minutes)

Agenda and aims: Introduce yourself, if necessary. Explain to students that during the next four lessons 
we are going to discover different types of drawings and drawing tools, and relate our learning with their 
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use in real-life situations. Ask whether students have any question before starting to the first lesson, and 
answer their questions if any. Explain to students that in this lesson we are going to consider some real-life 
examples to understand why people need two-dimensional representations of three-dimensional objects.

Real-life example 1 - Engineering: Show a two-minute part of a technical drawing video. Explain why 
we might need to learn such drawings and how these can be related to mathematics. Explain that this is 
how engineers start to draw multi-views of the shapes. They use different views to design different parts 
of the machines. All of the machines we use in daily life, such as computers, mobile phones, hairdryers 
and fruit squeezers, are composed of small parts, which were designed and drawn by engineers. Ask 
whether anyone’s mother or father is an engineer or whether anyone has seen such a drawing before. 
Invite students to share their ideas as well.

Real-life example 2 - Architecture: Show the whole class an architecture photo and repeat the same 
procedure in Engineering activity. Discuss why architects need to learn these drawings and how these 
can be related to mathematics. Invite students to share their ideas as well. Summarize the discussion 
with a few sentences.

Explain that the drawing in the video is the first step to draw plans of the houses, or draw new interior 
designs of the houses. All architects similar to engineers learn how to draw multi-views and prepare 
projects based on this knowledge. Such drawings are natural parts of their jobs. Architects also try to 
draw these shapes more clearly as their drawing should be easy to understand by the people who ask for 
their help or their customers.

Tools for drawing 1 - AutoCAD: Show whole class a two-minute part of an AutoCAD drawing video. 
Explain that this is how engineers use a tool to construct their shapes.

Discuss how such tools might help them draw three-dimensional polycubical shapes in two-dimension. 
Invite students to share their ideas as well.

Possible Prompt Questions

•	 What are the potential advantages and disadvantages of using a tool like this?
•	 What about accuracy?
•	 What about getting the detail right?
•	 What about time spent on construction?
•	 Why do you think we both need tools and pen and pencil drawings? – A possible answer: 

Sometimes it is easier to sketch, sometimes tools help us to visualise the shape so that we can 
draw with pen and pencil.

•	 Do you think using a similar tool in this class help us visualise different views of a shape? How? 
– An expected answer: with the help of the manipulations the tool allows

Tools for drawing 2 - GeoGebra: Explain to students that there are some tools which help us in drawing 
shapes similar to engineers. Introduce the authoring tool. Ask students to turn on their tablets and run 
the authoring tool created through GeoGebra. Give them some time to explore how it works. Move to 
construction examples after the discovery of GeoGebra.

Open the slide – Exploring the Authoring Tool in Figure 1. Give an example (use a simple construc-
tion similar to the one on the slide) to show how buttons work and how we can manipulate the shape 
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constructed on the authoring tool. Ask students to construct the same shape on their tools. Continue 
asking questions to stimulate their exploration of the tool.

Possible Guiding Questions

•	 2 x 2 x 1 (Length x Breadth/Width x Height)
•	 3 x 3 x 3

Then, ask them to remove cubes so that they have 3D shapes which have the following dimensions:

•	 3 x 2 x 2
•	 2 x 2 x 2
•	 2 x 1 x 2

Move to construction examples after the discovery of GeoGebra.

Figure 1. Exploring the authoring tool
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Activity 1

Organize students into groups of 2-3. Give a box of linking cubes to each group. Show the school picture 
and ask them to construct the school using linking cubes. Check their constructions and discuss their 
answers. Repeat the same procedure for the castle. Possible correct answers are included in Figure 2.

Students may construct the castle totally different than each other as only one view (front view) of 
the castle is seen from the pictorial representation. Here, explain that we need more than one view to 
construct the exact shape. Then, ask at least how many views we need and why?

Figure 2. School and castle pictures – I

Figure 3. Possible correct constructions from linking cubes – I
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Point to the castle in Figure 2. Ask them to construct the castle from linking cubes. Following that 
ask them to construct the same castle on the tool (by now they are familiar with both the polycubical 
shape and its pictorial representation).

Note: If there are students who constructed with a different depth, remind the point discussed before: 
Having only one view of a shape is not enough to decide all of its dimensions, therefore we may not 
construct the exact shape only having its one view. Ask them to remind you at least how many views we 
need to construct the exact shape and why?

After they all construct the shapes on the authoring tool, give a copy of the Activity Sheet Castles 
and focus on the front view of the first representation. Invite the group of students to manipulate their 
GeoGebra constructions to decide how to represent the front view. Ask all students to draw the front 
view on the dotted paper individually.

Do not forget to ask students to save their files before moving to the next question on the sheet. Please 
note that it might be useful or easier for students to see the depth if we use the angles of the isometric 
paper on the tool (30o-60o), so before giving the authoring tool to students set the angle accordingly. 
After they manipulate the shape they may decide which angle they would like to use. Figure 4 shows a 
possible correct GeoGebra construction of the castle and its front view.

Show the next slide having pictures of the buildings which require relatively more complex construc-
tions in Figure 5. Point to the school picture and ask them to construct the school using linking cubes 
or/and GeoGebra. Check their constructions and discuss their answers. Repeat the same procedure for 
the castle. Collect students’ constructions to give them back in the next lesson. Some of the possible 
correct answers are presented in Figure 6.

Figure 4. A possible correct GeoGebra construction and its front view – I
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Point to the Castle II in Figure 5. Ask students to construct the castle, which they constructed from 
the linking cubes, on the tool. After they all construct the shapes on the authoring tool, invite them to 
focus on the front view of their Castle II representation on the tool. Invite the groups of students to 
manipulate their GeoGebra constructions to decide how to represent the front view. Ask all students to 
draw the front view on the dotted paper individually. Figure 7 presents a possible correct construction 
of the castle and its front view.

Figure 5. School and castle pictures – II

Figure 6. Possible correct constructions from linking cubes – II
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Show the slide – Question – III in Figure 8. Follow the same procedure for the third question of the 
worksheet as well. This time, do not ask students to construct the shape with linking cubes. However, 
students who need concrete construction may continue constructing with them. Do not forget to ask 
students to save their files in GeoGebra before moving to the next question on the sheet as they will use 
them during the next lessons while exploring the views from top and sides. Figure 9 presents a possible 
correct construction of the third representation and its front view.

Figure 7. A possible correct GeoGebra construction and its front view – II

Figure 8. Question – III
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Ask students to construct other shapes having the same front view. Say that students can choose to 
use linking cubes or GeoGebra to construct the shape. Figure 10 presents possible answers.

Activity 2

Provide one activity sheet to each student. Activity sheets could have five worked examples, specifi-
cally designed with mistakes. Explain to students that now we will explore common student errors in 
orthogonal and isometric drawings.

Show the slide – Find the mistake and discuss why – I in Figure 11. Say that here is Deniz’s work. 
Ask them the following question. What is the mistake in the drawing and why is that?

Note that it is better to use “what was he thinking” question instead of asking “what do you think he 
thought” question to push students to step into the other person’s shoes a bit more.

Figure 9. A possible correct GeoGebra construction and its front view – III

Figure 10. Possible correct GeoGebra constructions
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Ask students to discuss why it’s wrong in their groups and to note the reason for it to their worksheets. 
Invite students to share their ideas with the whole class. Ask them to draw the correct representation 
individually. The correct drawing for the first question is represented in Figure 12. Repeat the procedure 
for the other four questions.

Conclusion and feedback: Conclude the lesson with a question. Show the slide What if in Figure 13, 
and distribute the sheets of paper to students and ask them to draw the front view of the given shape on 
the dotted paper.

Figure 11. Worked example

Figure 12. A possible correct drawing for the worked example - I
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This question is different than the other questions and the stars indicating the front view are not in 
the front perspective. The aim is to raise awareness that front views of polycubical shapes can change 
according to the perspective we look at. Some students might tend to draw the front view similar to the 
front view of the third question since the shape actually is the same and the only change is that the stars 
indicating the front view. Ask them to go back to their GeoGebra constructions and manipulate their 
constructed shapes to indicate the front view. A possible correct construction of the given representation 
and its front view are represented in Figure 14.

Figure 13. What if question

Figure 14. A possible correct GeoGebra construction and its front view – IV
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Explain to students that in this lesson we looked at real-life examples where orthogonal drawings 
are used, and a real-life example where a dynamic tool was used for drawing. Then, we constructed 3D 
shapes from linking cubes to represent some buildings in the given pictures mathematically. We explored 
an authoring tool and represented polycubical shapes on it, and used the tool to draw the view from the 
front on the dotted paper. The next lesson will be about the views from the top and sides.


